运动电荷对空间的作用和导线中电流产生的磁场

志勰

该文依据库仑作用力对运动电荷对外作用提供了一种较为系统的分析,提出了作用传递过程中运动电荷对外作用的矢量作用力。可以采用这种方法解释部分的电磁现象。在对运动电荷的分析中,得到了能量和动量不守恒的现象。采用该种方法可以解释加速带电粒子的“质量增加现象”,当然,并不是真的增加,而是一种矢量作用偏移。提出了提高加速器输出高速带电粒子的方法。

关键词:矢量偏移


    导线中电流产生磁场自奥斯特被发现以来,采用电荷的运动产生磁场已经被作为经验事实的约定。导线中的电流所产生的磁场被看作是导线中的电荷的定向运动已经被人们所普遍接受。现在,在工业应用中我们只要直接运动这个经验约定就行了,而不必去强调导线中电流所产生磁场的细节问题,也不必去理会磁场所产生的具体过程。只要应用建立在经验约定基础上的几个公式就行了。

    但是,在向微观进军的过程中,我们不去了解这些细节问题,我们就不能对电荷运动产生磁场以及场和电荷间微观作用机制作出彻底的解释,那么在微观上处理单独的电荷间和磁场的作用问题上,是不是推广建立在常规领域基础上的经验规律的约定就可以了呢?是不是普适于电荷间所有的情况呢?它们和电磁理论的推广(从电磁作用推广到电磁波)是不是就适用了呢?

    现在我们来讨论这些问题。

一、导线中电流产生的磁场和运动电荷产生磁场的区别

1、运动电荷产生的磁场

    静止的电荷不存在磁场,这是基本的客观事实。那么,运动的电荷为什么就产生磁场了呢?

(1)静止的基本电荷

    最常见的运动电荷莫过于电子,当然,如果在我们的生活中,运动的电子到是不容易被我们所发现。我们通过对绝缘体摩擦的方法将电子从一个物体转移到另一个物体上可以使我们获得带电体,这个带电体,不过这个带电体是一种宏观上的带电体,它的实质是物体中正电荷(原子核)所携带的量和负电荷(电子)的差别。如果正电荷大于负电荷,则物体带正电,如果负电荷大于正电荷,则物体带负电。

    但是,这是宏观上的带电体,它和我们现在所说的电荷存在一定的区别。如果我们采用这种方法意义上的电荷,那么毫无疑问,我们所探讨的仍然是建立在宏观基础上的经验约定。这些电荷由于物质都处在一定的温度,物质的原子都在它们本身的平衡位置无序的震动,因此电荷没有一个是绝对的静止的。采用这样的电荷实际上是对无序运动电荷的统计结果。物体是静止的,但物体的电荷元却是无序运动的。将带电的这个物体当作惯性参照系也是不严格的。

    我们所要探讨的是基本电荷,基本电荷常见的只有两种,一种是构成原子核的质子,它是以聚合的形式而存在的原子核,单独的一个质子除了带正电的氢离子之外,它具有很强的还原性能,则不易见到。我们知道常规状态下,我们不易见到。另一种则是原子核外存在的电子,在导体中,这种电子会自由移动。加热金属,会存在热电子发射。电视机中所采用的电子枪则是应用的电子射线。。发射出的电子在不受到外力的作用下是作为单独的个体而存在。那么,运动电荷采用电子则是方便的,也是合适的。通常意义上我们所说的运动电荷所产生的磁场,在这种运动电子上也是严格的。

(2)静止电荷的对外作用状态

    经验的规律告诉我们,静止的电荷会对电荷外的空间分布点的作用,其规律是电的作用强度平方反比。我们曾讨论过这个问题,在理论的处理上,可以采用如下的模式进行处理:

  第一、物质对外界的作用可以当作一个点源处理。

   第二、物质对外界的作用在空间(不得不使用传统的用语,因为这样便于理解)的延伸过程中可以当作各向同性。

   第三、物质对外界的作用在延伸过程中其总量没有损耗。

    对于这种对外界的作用,它必须通过某种确定的模式来进行。现在物理学中对这种电场的处理模式是采用电磁子(光子)发射的模式来处理的。但由于我们必须假设发射机制,并且在这种作用过程中电子的质量不会存在任何的变化。我认为不能采用这样的模式。(空间的介质问题之二——场的作用

  另一种是采用介质对作用的传递模式。电子在空间中存在和空间介质存在着作用,通过介质将这种作用传递出去。但这种处理方法要面对这个空间介质绝对参照系的问题。依据这种处理的模式,那么电荷所有的作用都要通过这个空间介质进行传递。目前还没有有效的模式来完成这种处理。但本文重要讨论利用电流和电荷运动的的作用模式来处理的一种可行性(在后面会看到不具有可行性,在后面我们要讨论)。

(3)运动电荷对外作用解决途径的困境

  采用空间介质来处理电荷在空间中存在的相互作用是一种比较合理的方法,这种方法还存在一定的困难,但从物质本身的属性上来说,要比电磁子发射的理论优越的多,它可以回避电磁子发射的机制以及电荷质量的不变所带来的不能解释的困难。

  但是回避这些困难的同时,也给自己建立了一定的困难,这种困难就是空间介质的绝对参照系。我们知道,物质都在的惯性参照系上存在,我们不能确定那一种惯性参照系是最为优越的,也不能确立那一种惯性参照系为绝对静止,至少在目前还没有有效的方法。电荷相对于空间介质运动,在这个运动的电荷和空间介质中就会造成作用的矢量性,相对于空间介质和这个运动的电荷之间,就不具有各向同性。但这种存在属性的差异以及电荷的存在属性特征至少在目前为止我们还没有发现。库仑定律的普适性我们在运动参照系中也不曾发现。一方面在于我们检验库仑定律的精确程度,另一方面在与我们所采用的定量系统是不是一个协变系统。如果是前者,那么我们是可以确定的,如果是后者,我们需要针对这个协变系统去寻找新的依据。针对定量系统的协变系统地确实非常棘手的问题。

  此外,运动电荷对空间作用的矢量在空间介质的传递速度上也会形成空间各向同性的失效。如图:

dldhcch-1.gif (3258 字节)

  有两个惯性参照系o和o',o'相对于o沿x方向以速度v运动。我们假设空间介质相对于o惯性参照系静止。在o'参照系中存在一个相对于o'系静止的带电物体。我们假设这个带电体所产生的作用完全是通过空间介质来进行传递。

  我们在o'系中去测量沿x'方向的电作用传递速度,那么理论上我们应该得到在沿x'方向和-x'方向,电作用的传递速度相差-2v。这已经不具有空间传递的各向同性。

  这样我们会得到电磁的传递速度是同绝对惯性参照系相关的。必然的结论是在一个惯性参照系中,作用的传递速度不具有各向同性。

  在后面的讨论中,我们所讨论的都是建立在空间介质传递的电磁的作用基础上来讨论的。如果不是建立在这个基础上,我们不能进行讨论,当然,这是建立在假设的基础上来讨论的。进一步的讨论在以后的另一篇文章——时空因子中还要讨论,在哪里会系统的讨论这些问题。

(4)运动电荷对外产生的磁场

第一、运动电荷对空间介质的作用分布

  一个静止的基本电荷所产生的对外作用可以采用这样一个规律来描述。如图:

dldhcch-2.gif (2662 字节)     我们必须首先假设,电子相对于空间介质是相对静止的。这是作为一个最基本的也是最简单的电子对外作用分布模式。

    空间介质相对于电子的速度为零,那么在电子对外作用传递的分布上则是各向同性。

    严格的数量关系则是以电子为中心,作用传递速度为C(C为光速,空间介质的传递速度)的等作用强度的球面。一个静止的电荷所受到的作用在这个球面上是相同的。从电子球面上的一点沿垂直于这个球面的方向所传递的作用,通过相同的时刻所到达的球面是相同的。

    如上是一个相对于空间介质静止的电荷电场的分布情况和规律。下面我们来讨论运动电荷的磁场分布情况,如图:

dldhcch-3.gif (4798 字节)     假设电子相对于静止参照系o(图中没有画出来)y方向以速度v运动,空间介质相对于o参照系静止。图中虚圆球面表示相对于空间介质静止的球面,即:电子相对于空间介质静止的我们上个图中所表示的分布状态。实线球面表示运动电子在某一个瞬时时刻其对外作用在介质中的分布状态。电子所在的这个参照系我们用(x`、y`、z`)来表示。

    一个电子在无时不刻的和它周围的空间介质发生着相互作用,并且电子对空间介质的作用会通过空间介质进行传递,在传递的过程中完全有介质决定,或者说空间介质对电子的某一个瞬时作用同电子作用前的状态和发生作用后电子本身的状态无关,完全取决于空间介质。空间介质对电子给于的作用具有完全独立的传播性。

    在电子运动的一序列时间过程中,任一个时刻都会向      

空间介质产生一个相互作用,这些作用被空间介质沿确定的方向传递出去。由于运动电子在空间中所存在的位置是移动的,那么作用源以一定的速度在移动,接受作用的电子在相邻两个时刻里所接受到的作用的方向,和强度存在区别,并且相互叠加,并表现为一种矢量。

    电子相对于静止参照系o以速度v运动的任一个时刻,电子的本身所传递给空间介质的作用在空间介质的传递过程中,和静止参照系o中一个电子在静止状态下的分布过程是相同的。在不考虑空间介质间作用和电子在不同状态所传递的作用本身存在区别的情况下,就是将电子的对外作用属性当作刚性和各向同性看待,我们没有任何的理由怀疑电子在相同的一个空间位置的一个瞬时时刻所给与空间介质的作用在传递过程存在任何的不同。这样,我们只需要将电子对空间介质的作用进行坐标平移就可以了。空间坐标平移的量同v/c成正比(其中v为电子运动的速度,c为光速,介质对电子作用的传递速度),同和电子之间的距离成正比。

    图中白色的电子表示的电子对空间介质提供作用的空间点,黑色的电子表示从电子提供作用后的一个时刻电子所运动到的位置。虚圆圈表示电子在新的空间点在和空间介质相对静止时对外提供的空间介质作用分布。实圆圈表示这个运动的电子实际的空间介质作用分布,其中包含了电子对外分布作用,在不同空间位置作用。实圆圈是相同时刻电子对外作用的分布传递范围。

  这个矢量偏移量同运动电荷的运动方向是相反的。表现形式是矢量作用力。(关于运动电荷的这种矢量偏移在后面的附注里有专门的详细的说明)

第二、运动电荷和静止电荷间的作用

  上面我们已经看到运动电荷给与空间介质的作用以及在空间介质的分布情况,和静止电荷是不同的,这个不同就在于运动电荷存在一个v/c的坐标平移量。那么根据牛顿力学我们可以得到一个结论,这个结论就是一个相同空间位置的运动电荷和静止电荷给与空间某一点的作用,存在一个v/c的作用差异。这个作用差异是,运动电子将会使空间某一点的静止电荷存在一个矢量作用力,静止电子给与空间一点电荷则仅存在库仑力。这是由电荷在运动过程中所给与空间介质作用的分布所决定。

( 抱歉,我的数学不好,不能将它描述出来。我想即使数学不错的朋友将它描述出来,也需要花费不少的心思。因为一个运动电荷的相邻时刻的对外作用分布的叠加以及空间中某一电荷所接受到的作用分布的随时刻平移分布的改变,空间任意点接受到的矢量作用随时间的推移都是一种变量。虽然总体上相对v/c平移量是不变的,但空间介质矢量分布的作用过程将会是非常复杂的。另一方面,空间介质传递的某一方向某一点的矢量的量值是未知的,只能采用电荷最初作用量的比值关系。关于电荷对外空间介质的作用总量和任意矢量的分量的关系,除了平方反比并没有可以借鉴的定量的内容,哪怕定性的都不能找到,一切都是陌生的。)

  关于一个运动电荷和静止电荷间的作用,这个运动电荷所给与静止电荷的作用的数量关系。我建议采用试验的方法测定。但毫无疑问,它同v/c成正比。

  如上是对于单独的电荷间的关系。下面我们来看作为群体的关系。

dldhcch-4.gif (3957 字节)     当运动电荷和静止电荷当作参照系的关系来看待时,则上面的v/c的关系则不再存在,如图:

    运动电荷为一个电子枪发射的高速运动的电子,图中的静止电荷我们不能找到这样的情况,。不能找到一系列静止的电子。但是可以采用导线来替代。我们需要注意的是采用导线来替代,存在一些区别。这个区别就是导线中除了存在自由移动的电子之外,还存在带正电的原子核。由于导线中的正电荷和负电荷大小相等方向相反,因此不能测定出导线中的正电荷或者付电荷所受到这种矢量作用力的大小。而只能测定导线两端的电压。或者采用带电的物体。但是由于将物体作为电容,其所携带的电量一般情况下是很小的,不宜测量到,即便测量到,其力学效应应该也是很微小的。

    当运动电荷从电子枪的出口到电子运动一段距离的这一区域里。如果电子发射的是稳定的,那么我们不能采用上面偏移的方法来描述运动电荷给与静止电荷的作用,因为运动电荷的偏移是采用和介质相对静止电荷给与空间介质的作用在时间里偏移来描述的。如果运动电荷均匀的充满了这一区域,那么运动电荷给与静止电荷的作用和静止电荷间的作用将没有区别。采用电荷给与空间介质的作用则没有作用矢量偏移量。v/c则作为矢量偏移量不再适用。高度密集均匀的矢量偏移量的叠加将没有矢量偏移(应用于电流中也是相似的,稳定电流不会产生感应电流)

    这和客观事实是吻合的。并且可以应用于电流的描述。

第三、运动电荷产生的磁场和电荷对空间介质的作用分布的区别

    从上面我们可以看到,运动的电荷除了给静止的电荷一个库仑力之外还给与这个静止电荷一个矢量作用力,这个作用力的方向是和运动电荷的运动方向是相反的。两个线圈之间的感应电流也可以通过这种力学作用模式进行解释,和传统物理学中的电磁感应现象是吻合的。在传统电磁理论的解释过程中,是将这种感应的模式赋予到电场和磁场的转换上。即变化的磁场产生电场,变化的电场产生磁场。

    通过空间介质的力学分布过程来处理这个问题,仍然可以得到相类似的结论。那么是不是说空间介质的对作用的分布过程就可以解释了电场和磁场之间的关系呢?磁场是不是可以等效于这种电荷传递过程中的作用平移矢量呢?

    实不相瞒,这段时间我也是围绕这个问题而不能给与确定性的结论,这是一个很头疼的问题。现在我也不能确定磁场是等效于这种作用矢量(磁场的作用和这种属性的作用是相似的,但却是不同于这种作用),还是磁场的本身就是这种作用平移矢量。

    根据永久磁性材料的存在,我认为将磁场完全化归到运动过程这电种荷中的矢量偏移作用是缺乏依据的,除非可以找到物质结构过程中存在这种矢量偏移作用的结构。否则不能解释永久磁性材料的结构。我认为还是保留这种观念分歧点为好。

    如果磁场可以采用这种形式来描述,并且看作是运动过程这种电荷中的矢量偏移作用,那么现有的电磁理论则只能看作形式上的描述,没有任何客观实在的意义,这导致电磁理论推广到电磁波的描述是错误的,没有任何的意义,包括电磁波的传递速度,磁的属性等等。这是需要注意的,也是需要慎重的原因。请不要轻易的下定论。这是我所建议的。

2、导线中电流产生的磁场和电子间的作用

    导线中产生的磁场通常看作一种经验约定,即:当给与一个通电导线通一一个确定的电流,那么在垂直于电流的方向上会产生一个确定的磁场,电流和它所产生的磁场成正比。电流和磁场存在这样经验约定的关系。

  不论是我们采用传统的电磁理论,还是采用本文中上面所介绍的电荷运动过程中的矢量偏移作用,两个相对静止的电荷之间不存在磁场的作用。导线中运动的电子所产生的磁场是什么样的呢?是否可以将导线中运动的电子当作参照系来看待呢?下面我们来看这个问题,如图:

dldhcch-5.gif (5569 字节)     图中是一段导线的简图,其中白色的圆球表示的是原子,黑色的小球表示的是电子。电子的运动方向和电流的运动方向是相反的。当导线的上端电子的密度大于导线下端的电子的密度的时候,就会在导线中形成电势差,从而使电子发生定向移动。

    在电子的移动过程中,电子总是从原子的夹隙通过。电子从原子的一个位置移动到另一个位置,并不是匀速的,由于受原子电场的作用,电子的运动速度会从零到一个定值,类似于和原子发生碰撞

    这样,在导线中存在电流的时候,导线的移动速度在统计上为0<v<x,其中x为电子运动速度的统计上限的最大运动速度。

  我们可以看到,电子在导线中的运动速度为一段区域速度的群体,它不能当作一个惯性参照系。它会对任何一个惯性参照系都会产生磁场。电子的运动速度不是单一的。这和一等速度运动的电子群是不同的。

    有些朋友认为,只要沿着电流的运动方向运动,运动速度和电流的运动速度相同时,我们所建立的这个运动参照系中将没有电流所给于的磁场的作用。这是不对的。导线会对任何一个惯性参照系都会产生磁场的作用。

    当导线中大量的电子做定向运动的时候,导线中电子对外提供的作用的叠加将会和大量电子的静止状态的受力状态是相同的,这一点可以通过对不同时间序列中大量电子的定向移动的矢量叠加来实现。但是,但是这里面存在一个不同,这种不同就是电子做为电场对外作用的作用源是随时刻定向移动的。每一个独立的电子对外作用的矢量偏移是存在的,每一个独立的电子所给于其它电子的作用也会是定向偏移。

    前面我们知道,电荷给于其它电荷的矢量偏移作用同速度v成正比,一般情况下,电子的运动速度是远小于光速的。那么矢量偏移也会非常的小。导线产生的磁场如果采用过过多少单位的电流来作为磁的作用是远远不够的。那么,导线中电流产生的磁场是由什么提供的呢?其实很简单,当导线中通过一个电荷的时候,沿导线的方向各个截面上,每一个截面都会通过一个电子。实际运动的电子的数量为导线的长度和导线中相邻两个原子间距离的比值。这个量是很大的。也就是说,当导线中通过一个电荷的时候,导线的长度和导线中相邻两个原子间距离的比值个电子都在同时运动,参与这种作用。

二、导线中电流产生的磁场作用

1、两个通电导线所产生的磁场属性

    在电磁理论中,楞次定律建立了电磁感应方向的规律。但是,在电磁感应中,我们给于通电线圈加上一个磁通率较高铁芯,那么电磁感应现象就会加剧。采用不同状态电子间作用的矢量偏移不能对这个问题进行解释。如果导线中电子的感应运动完全取决于电子在运动过程中所给于的矢量偏移,那么应该和磁芯应该是没有关系的。这个问题给于磁场的解释产生一定的困惑,在这个问题上,不能确定磁场是否就是电荷在运动过程中所给于其它电荷的矢量作用偏移。

    可以存在两种方法进行处理:

    一种处理方法是将磁场也看作是这种矢量偏移,性质是相同的。但是这种看法存在问题,分子电流理论来解释的磁现象是不能成立的。(可参见物质的分子属性与原子核外的电子分布状态——核外电子的存在状态和物质分子对光吸收的关系 )采用分子电流所形成的矢量偏移来解释磁性材料的磁场是不能成立的。

    另一种处理方法是,将电荷的运动所形成的这种矢量偏移看作和磁场的作用是属性不同的但等效的作用模式。这样的看法和传统的电磁理论并没有在理论上进步多少,只是提供了一种运动电荷所提供的矢量作用模式。电场与磁场间的关系和传统的电磁理论一样仍然是不统一的。

  但是,在如上两种处理方法中,都不能回避一个问题,这个问题就是两个通电导线之间的作用,不论通过何种模式进行解释,所形成两个导线之间存在的作用力最终都必须通过和物质实体发生作用来实现,其作用模式最终要落实到导线的本身上(原子核和核外电子上),不论是采用矢量偏移还是采用磁场。这一点都是相同的。下面我们还要谈到采用这种统一传递的作用的失效性,通常意义上的磁场和电场不能采用简单的作用传递的模式进行处理。

2、两个通电导线所产生的磁场作用力

    当两根通电导线都通一确定的电流的时候,两根导线之间会产生作用力。当电流的方向相同时,导线间会产生引力的作用,当电流的方向相反时,导线间会产生斥力。我们来看运动电荷对这个问题的矢量偏移分析,也包括传统磁场的分析。

    我们先来看传统的磁场理论:

    当两个平行的导线中存在电流时,由于导线中带负电荷的电子和带正电荷的原子核所携带的电量大小相等,因此两个导线之间不存在库仑力的矢量作用。导线中一部分电子在同向运动,同向运动的这些电子会产生磁场,磁场的大小同电流的大小成正比。磁场针对两个导线中这部分运动的电荷,产生的作用是很微小的,几乎可以略而不计。(导线中电子的运动速度为0<v<x,运动速度差异都在相同的区间,统计上可以取中间值,相同运动状态的电子之间没有磁场作用力。)。那么磁场的作用对象则主要是原子中没有运动的电子以及原子核了。如果导线每一个截面的一个瞬时时刻所通过的电子为n个,那么则有n倍的导线的长度和导线中相邻两个原子间距离的比值的正电荷参与作用(当然,原子核中其它的电荷也会发生相互作用,但由于和其它的电子所受到的作用大小相等,方向相反,给抵销掉了)。

    在力学分析上,运动电荷会在磁场中受到作用力,通电导线间的作用力就来自于这种作用力。是磁场和正电荷的作用。但是,一个很简单的试验就会给于否定性的结论。

  在上面我们从力学的分析中可以看到,导线中运动电子的所产生的磁场的作用从力学分析上主要来自于通电导线中运动的电子通过空间介质对作用的传递,传递给另一个导线中的基本电荷,表现为矢量作用力主要是导线中带正电荷的原子核。那么我们只要在一个通有电流的导线旁放置带正电荷的一个物体就行了,测量这个带正电荷的物体所受到的这种作用力。

  传统的电磁理论说明,相对于磁场静止的电荷不会受到作用力。只有垂直于磁场运动的电荷才会受到磁场力的作用。根据传统的电磁理论来判断,这个带正电的物体不会受到磁场的作用力。那么这说明传统的电磁理论不能采用这样的解释途径。当然实验上也应该如此,因为如果像采用力学分析的这样,作用力来自于导线中运动电子和正电荷的作用,那么在稳定直流电流的通电导线旁的一段导线会存在电势差,这是不可能的。

  我们再来看导线中运动电荷的矢量偏移分析:

  导线中运动电荷在沿运动方向上的电子数量是非常的庞大,那么采用任一个时刻任一个空间位置电子对空间作用传递的叠加就不会存在矢量偏移量。(这个问题已经在2、导线中电流产生的磁场和电子间的作用中说明过了)但是,有一点是不同的,静止电子所接收到的运动电子发出的作用和相对介质静止的状态是不同的。这个不同就在于电子运动所产生的空间作用方向在发生瞬时的改变。(关于运动电子我们后面再谈这个问题)但是却不表现出矢量的作用。

3、通电导线和感应电流间的作用

  在电磁线圈中,给其中的一个线圈一个变化的电流,那么在感应线圈中会产生一个感应电流。这个问题可以通过电荷的矢量偏移来得到解决。

  导线中如果是稳定的电流(或者滞留电),那么对感应线圈没有任何的影响,因为矢量偏移近存在一个方向的改变。但如果是变化的电流。在变化的过程中,会存在一个矢量偏移的大小。会形成感应线圈中的电子定向移动。

三、运动电荷之间的矢量偏移和技术应用

1、运动电荷间的一种特殊情况下的奇特现象。

  前面我们已经讨论了矢量偏移的一些情况,下面我们来讨论一种矢量偏移的实用价值。如图:

dldhcch-6.gif (9030 字节)   当两个高速运动电子相同状态下,他们的矢量偏移会是什么样的情况呢?

  如图:图中A'、B'两个电子是平行以高速v运动的两个电子,白色的两个球A、B表示电子A'、B'两个球在前一刻时的位置。

  图中所画的三角形为A球给于B球作用的简图。其中B'AB构成三角形,角B'AB所构成的角度为θ。B'所受到A球的矢量偏移作用力的大小为dldhcch-7.gif (1274 字节)

其中,F为矢量偏移作用力,f为AB'之间的静电作用力q1q2分别为AB两个电子的电量。

  我们可以看到,两个高速运动电子之间的矢量偏移作用力其作用是使AB两个电子获得加速作用力。只要我们保持AB两个电子平行且其空间位置相对不变。那么,AB两个电子就会不断的被它们自身的矢量偏移作用力不断的加速。我们并不需要给它们施加任何的能量或者加速电场。就会使电子获得加速运动。该现象违反能量守恒和转化定律。同时也违反动量守恒定律。

  其实我们从传统的电磁理论中完全可以得到这样的结论。在上面的分析过程中,也没有违反任何电磁理论,计算过程采用的是库仑定律,加速机制来源于电子本身的静电场。

  现在我们来看看在这个原理上如何有效的最大限度的利用这个矢量偏移作用。可以存在两种方法:

  一、点源静电作用力(库仑力)同距离的平方成反比。这提供了一个我们增大矢量偏移作用力的方案,我们只要缩短两个电子之间的距离就可以了。

  二、增加电子的数量,当然增加的方法有局限性的。就是需要在一个平面上增加电子的数量。电子位于一个圆环上,该圆环面垂直于电子运动的方向。否则,由于园面上的电子受力大小不一,那么会打破电子的分布状态。

2、运动电荷间矢量偏移作用力的负面影响

  如果电子不在沿运动方向的垂直平面上,会有什么情况呢?如图中的C、D两个电子。那么C、D两个电子会受到A、B两个电子矢量偏移作用力的作用,其方向是阻碍C、D两个电子向正前方运动。其结果是其速度会不断的降低。如果运动方向上是一个大量的电子群,那么可以想象,在这个电子群最后方的电子所受到的矢量偏移阻力将会是非常大的。这个矢量偏移阻力同电子的运动速度成正比。如果我们采用回旋加速器来加速电子,当速度达到一定速值的时候,由于这些电子首尾相连,那么由于这个矢量偏移阻力的增大,我们将不能在对这些电子进行加速。在这种情况下,减少加速电子的数量将会提高原加速器加速的速值。

  对于直线加速器,由于不存在加速过程电子群的首尾相连,那么运动电荷间矢量偏移作用力要小于回旋加速器。但直线加速器最初加速的电子为速值最高,此后会由于运动电荷间矢量偏移作用力的存在,对加速电子的速值存在负面的影响。对于直线加速器,提高加速电荷的能量,通过减少加速电荷的线密度也是有效的。其矢量偏移作用力同速度成正比。(这个关系是不严格的,关于这个问题可参见附注2)

3、传统观念中的偏见

  对于回旋加速器中带电粒子加速的过程中所碰到的加速屏障,我们通常采用带电粒子随速度的增加其质量增加的缘故来解释。我个人认为是非常不合理的。并且被普遍接受为对相对论质量增加的证明。其最关键的原因在于忽视了物质运动过程中相互间的作用。

 


附注1:矢量偏移,如图:

dldhcch-3.gif (4798 字节) 关于这个图,可参见文章中的这个图的介绍

    电子在空间介质中运动过程中,会存在沿运动轨迹的空间位置点,基本带电粒子的作用在每一个空间位置点都会依照电子在静止存在状态时的作用对空间介质产生作用。这里面忽略了基本带电粒子的位移过程中和空间介质的关系动量。

    一种原因是麦克尔逊——莫雷实验对刚性以太给于一个否定性的结论。在这个意义上来说是严格成立的。

    另一种原因是将电子和空间介质的关系当作一种未知量处理这里面存在一种误差,即:近似处理。

    不论是如上所提出的那一种情况,矢量偏移所指的是基本带电粒子瞬时对空间介质作用的传递速度和基本带电粒子

的运动速度所引起的对其它带电粒子作用的改变。会给于其它带电粒子矢量作用力。

    基本带电粒子的运动过程中可以存在两种存在模式,一种是其运动状态不变,这种运动状态是匀速运动。我们文中所讨论的情况大多是这种情况。另一种是其运动状态在随时发生改变,这种运动状态是变速运动状态。在基本带电粒子的变速运动状态中,对外界其它带电粒子的作用其矢量偏移也会存在一个变量作用。但对于沿运动方向线状的群体的大量带电基本粒子的定向匀变速运动中,则会存在一个稳定的矢量偏移。这里就不做图了。

附注2:矢量偏移作用力的另一种情况

dldhcch-8.gif (6830 字节)     如图:

    在沿电子运动的竖直(一个电子位于另一个电子运动的前方)方向,如果将它们之间的作用也看作是矢量偏移作用,那么矢量偏移作用力同速度成正比则不在正确。

    其原因在于电子对外的库仑作用力同距离的平方成反比。如图中B'电子在速度提高一倍后,它所存在的位置距电子A的作用源的作用关系理论上应该是同两者距离的平方成反比。但电子A作用源并不是客观实在的静止的电子作用源,电子实际的位置已经运动到A'位置。对于这种作用源所提供的作用在距离非常微小的时候,距离平方反比定律应该不能成立,但有一点毫无疑问,这个作用力也是非常大的。

    这种现象在电子的运动速度接近到光速的时候,应该是很正常的现象,如果被加速的电荷群数量较大的话,那么后面电子的运动速度在趋近于某一速值之后,将不能再进行任何的增加。而不是现有的科学理论中所说的电子的运动速度只能无限的趋近光速。照这个现实来说,只能趋近于接近光速的某一数值。当然,降低加速电荷的线密度

,加大被加速电荷间的距离是提高输出加速带电粒子能量的方法。

    这样我们就找到了被加速带电粒子最高输出速度的方案,加速相同方向一前一后两个带电粒子,其速度的极限为后一个带电粒子不能位于第一个带电粒子作用源附近,如图中的B'不能位于A附近。

 

后语:本文所经历的时间也是较长的,在写作的过程里,有几个问题是不能确定的。磁场是不是这种矢量偏移,这在目前是不能确定的。介质传递的属性问题。介质传递速度仍然采用光速作为近似刚性的属性,同时也不能看作刚性,作为这种矛盾的适用性。一方面是分析方法的问题,另一方面是在分析的过程中所漏掉的因素,本来在写作的过程里想写几个附注,一是时间长了,二是在时空因子中还要讨论,有一些内容给混在一起,反而不知道从哪里补写了。有什么不同意见和问题可来信交流和指出。

2003.5.18


返回首页